
Operating System:
Chap6 Process
Synchronization
National Tsing-Hua University
2016, Fall Semester

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 2

Overview
 Background
 Critical Section
 Synchronization Hardware
 Semaphores
 Classical Problems of Synchronization
 Monitors
 Atomic Transactions

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 3

Background
 Concurrent access to shared data may result

in data inconsistency

 Maintaining data consistency requires
mechanism to ensure the orderly execution
of cooperating processes

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 4

Consumer & Producer Problem

/*consumer*/
while (1) {
 while (counter == 0) ;
 item = buffer[out];
 out = (out + 1) % BUFFER_SIZE;
 counter--;
}

 Determine whether buffer is empty or full
 Previously: use in, out position
 Now: use count value

/*producer*/
while (1) {
 nextItem = getItem();
 while (counter == BUFFER_SIZE) ;
 buffer[in] = nextItem;
 in = (in + 1) % BUFFER_SIZE;
 counter++;
}

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 5

Concurrent Operations on counter
 The statement “counter++” may be implemented

in machine language as:
 move ax, counter
 add ax, 1
 move counter, ax

 The statement “counter--” may be implemented
as:

 move bx, counter
 sub bx, 1
 move counter, bx

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 6

Instruction Interleaving
 Assume counter is initially 5. One interleaving of

statement is:
 producer: move ax, counter  ax = 5
 producer: add ax, 1  ax = 6
 context switch
 consumer: move bx, counter  bx = 5
 consumer: sub bx, 1  bx = 4
 context switch
 producer: move counter, ax  counter = 6
 context switch
 consumer: move counter, bx  counter = 4
 The value of counter may be either 4, 5, or 6, where the

correct result should be 5

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 7

Race Condition
 Race condition: the situation where several

processes access and manipulate shared data
concurrently. The final value of the shared data
depends upon which process finishes last

 To prevent race condition, concurrent processes
must be synchronized
On a single-processor machine, we could disable

interrupt or use non-preemptive CPU scheduling

 Commonly described as critical section problem

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 8

Critical Section

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 9

The Critical-Section Problem
 Purpose: a protocol for processes to cooperate
 Problem description:
N processes are competing to use some shared data
 Each process has a code segment, called critical

section, in which the shared data is accessed
 Ensure that when one process is executing in its

critical section, no other process is allowed to
execute in its critical section mutually exclusive

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 10

The Critical-Section Problem

do {
 entry section
 critical section
 exit section
 remainder section
} while (1);

Get entry permission

Modify shared data

Release entry permission

 General code section structure
Only one process can be in a critical section

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 11

Critical Section Requirements
1. Mutual Exclusion: if process P is executing in its CS,

no other processes can be executing in their CS
2. Progress: if no process is executing in its CS and

there exist some processes that wish to enter their
CS, these processes cannot be postponed
indefinitely

3. Bounded Waiting: A bound must exist on the
number of times that other processes are allowed
to enter their CS after a process has made a
request to enter its CS

 How to design entry and exist section to satisfy the
above requirement?

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 12

Review Slides (1)

 Race condition?
 Critical-Section (CS) problem? 4 sections?
 entry, CS, exit, remainder

 3 requirements for solutions to CS problems?
mutual exclusion
 progress
 bounded waiting

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 13

Critical Section Solutions &
 Synchronization Tools
 Software Solution
 Synchronization Hardware
 Semaphore
 Monitor

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 14

Algorithm for Two Processes

/* Process 0 */
do {
 while (turn != 0) ;
 critical section
 turn = 1;
 remainder section
} while (1)

/* Process 1 */
do {
 while (turn != 1) ;
 critical section
 turn = 0;
 remainder section
} while (1)

Mutual exclusion? Progress?
 Bounded-Wait?

 Only 2 processes, P0 and P1
 Shared variables

 int turn; //initially turn = 0
 turn = i ⇒ Pi can enter its critical section

entry
section

exit
section

Yes No
Yes

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 15

Peterson’s Solution for Two Processes
 Shared variables
 int turn; //initially turn = 0
 turn = i ⇒ Pi can enter its critical section
 boolean flag[2]; //initially flag [0] = flag [1] = false
 flag [i] = true ⇒ Pi ready to enter its critical section

//Pi:
do {
 flag[i] = TRUE;
 turn = j ;
 while (flag [j] &&
 turn == j) ;
 critical section
 flag [i] = FALSE ;
 remainder section
} while (1) ;

Enter CS when either:
1. a process gets its turn
2. the other process is not ready

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 16

Proof of Peterson’s Solution

/* process 0 */
do {
 flag[0] = TRUE;
 turn = 1 ;
 while (flag [1] && turn == 1) ;
 critical section
 flag [0] = FALSE ;
 remainder section
} while (1) ;

/* process 1 */
do {
 flag[1] = TRUE;
 turn = 0 ;
 while (flag [0] && turn == 0) ;
 critical section
 flag [1] = FALSE ;
 remainder section
} while (1) ;

 Mutual exclusion:
 If P0 CS  flag[1] == false || turn == 0
 If P1 CS  flag[0] == false || turn == 1

 Assume both processes in CS  flag[0] == flag[1] == true
 turn==0 for P0 to enter, turn==1 for P1 to enter

 However, ”turn” will be either 0 or 1 because its value will be set for both
processes, but only one value will last

 Therefore, P0 ,P1 can’t in CS at the same time!

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 17

Proof of Peterson’s Solution
 Progress (e.g., P0 wishes to enter its CS):

(1) If P1 is not ready  flag[1] = false  P0 can enter
(2) If both are ready  flag[0] == flag[1] == true

If trun ==0 then P0 enters, otherwise P1 enters
 Either cases, some waiting process can enter CS!

/* process 0 */
do {
 flag[0] = TRUE;
 turn = 1 ;
 while (flag [1] && turn == 1) ;
 critical section
 flag [0] = FALSE ;
 remainder section
} while (1) ;

/* process 1 */
do {
 flag[1] = TRUE;
 turn = 0 ;
 while (flag [0] && turn == 0) ;
 critical section
 flag [1] = FALSE ;
 remainder section
} while (1) ;

(1)

(2)

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 18

Proof of Peterson’s Solution
 Bounded waiting (e.g., P0 wishes to enter its CS):

(1) Once P1 exits CS  flag[1]==false  P0 can enter
(2) If P1 exits CS && reset flag[1]=true
  turn==0 (overwrite P0 setting) P0 can enter
 P0 won’t wait indefinitely!

/* process 0 */
do {
 flag[0] = TRUE;
 turn = 1 ;
 while (flag [1] && turn == 1) ;
 critical section
 flag [0] = FALSE ;
 remainder section
} while (1) ;

/* process 1 */
do {
 flag[1] = TRUE;
 turn = 0 ;
 while (flag [0] && turn == 0) ;
 critical section
 flag [1] = FALSE ;
 remainder section
} while (1) ;

(1)

(2)

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 19

Producer/Consumer Problem

 Producer process
while (TRUE) {
 entry-section();
 nextItem = getItem();
 while (counter == BUFFER_SIZE);
 buffer[in] = nextItem;
 in = (in + 1) % BUFFER_SIZE;
 counter++;
 computing();
 exit-section();
}

 Consumer process
while (TRUE) {
 entry-section();
 while (counter == 0) ;
 item = buffer[out];
 out = (out + 1) % BUFFER_SIZE;
 counter--;
 computing();
 exit-section();
}

 Incorrect: deadlock, if consumer enters the CS first.

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 20

Producer/Consumer Problem

 Producer process
while (TRUE) {
 nextItem = getItem();
 while (counter == BUFFER_SIZE);
 buffer[in] = nextItem;
 in = (in + 1) % BUFFER_SIZE;
 entry-section();
 counter++;
 computing();
 exit-section();
}

 Consumer process
while (TRUE) {
 while (counter == 0);
 item = buffer[out];
 out = (out + 1) % BUFFER_SIZE;
 entry-section();
 counter--;
 computing();
 exit-section();
}

 Correct but poor performance

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 21

Producer/Consumer Problem

 Correct & Maximize concurrent performance

 Producer process
while (TRUE) {
 nextItem = getItem();
 while (counter == BUFFER_SIZE);
 buffer[in] = nextItem;
 in = (in + 1) % BUFFER_SIZE;
 entry-section();
 counter++;
 exit-section();
 computing();
}

 Consumer process
while (TRUE) {
 while (counter == 0) ;
 item = buffer[out];
 out = (out + 1) % BUFFER_SIZE;
 entry-section();
 counter--;
 exit-section();
 computing();
}

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 22

Bakery Algorithm (n processes)
 Before enter its CS, each process receives a #
 Holder of the smallest # enters CS
 The numbering scheme always generates # in

non-decreasing order; i.e., 1,2,3,3,4,5,5,5
 If processes Pi and Pj receive the same #, if i < j,

then Pi is served first
 Notation:
 (a, b) < (c, d) if a < c or if a == c && b < d

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 23

Bakery Algorithm (n processes)
//Process i:
do {
 choosing [i] = TRUE ;
 num[i] = max(num[0],num[1],…,num[n-1]) + 1;
 choosing [i] = FALSE ;
 for (j = 0; j < n; j++) {
 while (choosing [j]) ;
 while ((num[j] != 0) &&
 ((num[j], j) < (num[i], i))) ;
 }
 critical section
 num[i] = 0 ;
 reminder section
} while (1) ;

 Bounded-waiting because processes enter CS on a
First-Come, First Served basis

Get ticket

FCFS
Cannot compare when
num is being modified

release
ticket

Chapter6 Synchronization

Bakery Algorithm (n processes)
 Why cannot compare when num is being modified?
 Without locking…

 1. Let 5 be the current maximum number
 2. If P1 and P4 take number together, but P4 finishes before P1

P1 = 0; P4 = 6  P4 will enter the CS

 3. After P1 takes the number
P1 = P4 = 6  P1 will enter the CS as well!!!

 With locking…
 P4 will have to wait until P1 finish taking the number
 Both P1 & P4 will have the new number “6” before comparison

 Operating System Concepts – NTHU LSA Lab 24

Chapter6 Synchronization

Pthread Lock/Mutex Routines
 To use mutex, it must be declared as of type pthread_mutex_t

and initialized with pthread_mutex_init()
 A mutex is destroyed with pthread_mutex_destory()
 A critical section can then be protected using

pthread_mutex_lock() and pthread_mutex_unlock()
 Example:

specify default
attribute for the mutex

#include “pthread.h”
pthread_mutex mutex;
pthread_mutex_init (&mutex, NULL);
pthread_mutex_lock(&mutex); // enter critical section

pthread_mutex_unlock(&mutex); // leave critical section
pthread_mutex_destory(&mutex);

Critical Section

25 Operating System Concepts – NTHU LSA Lab

Chapter6 Synchronization

Condition Variables (CV)
 CV represent some condition that a thread can:

 Wait on, until the condition occurs; or
 Notify other waiting threads that the condition has occurred

 Three operations on condition variables:
 wait() --- Block until another thread calls signal() or broadcast()

on the CV
 signal() --- Wake up one thread waiting on the CV
 broadcast() --- Wake up all threads waiting on the CV

 In Pthread, CV type is a pthread_cond_t
 Use pthread_cond_init() to initialize
 pthread_cond_wait (&theCV, &somelock)
 pthread_cond_signal (&theCV)
 pthread_cond_broadcast (&theCV)

26 Operating System Concepts – NTHU LSA Lab

Chapter6 Synchronization

Using Condition Variable
 Example:

 A threads is designed to take action when x=0
 Another thread is responsible for decrementing the counter

 All condition variable operation MUST be performed while a
mutex is locked!!!

action() {
 pthread_mutex_lock (&mutex)
 if (x != 0)
 pthread_cond_wait (cond, mutex);
 pthread_mutex_unlock (&mutex);
 take_action();
}

counter() {
 pthread_mutex_lock (&mutex)
 x--;
 if (x==0)
 pthread_cond_signal (cond);
 pthread_mutex_unlock (&mutex);
}

pthread_cond_t cond; pthread_mutex_t mutex;
pthread_cond_init (cond, NULL); pthread_mutex_init (mutex, NULL);

27 Operating System Concepts – NTHU LSA Lab

Chapter6 Synchronization

Using Condition Variable

 What really happens…
1. Lock mutex

action() {
 pthread_mutex_lock (&mutex)
 whild (x != 0)
 pthread_cond_wait (cond, mutex);
 pthread_mutex_unlock (&mutex);
 take_action();
}

counter() {
 pthread_mutex_lock (&mutex)
 x--;
 if (x==0)
 pthread_cond_signal (cond);
 pthread_mutex_unlock (&mutex);
}

28 Operating System Concepts – NTHU LSA Lab

Chapter6 Synchronization

Using Condition Variable

 What really happens…
1. Lock mutex
2. Wait()

1. Put the thread into sleep &
 releases the lock

1. Lock mutex

action() {
 pthread_mutex_lock (&mutex)
 whild (x != 0)
 pthread_cond_wait (cond, mutex);
 pthread_mutex_unlock (&mutex);
 take_action();
}

counter() {
 pthread_mutex_lock (&mutex)
 x--;
 if (x==0)
 pthread_cond_signal (cond);
 pthread_mutex_unlock (&mutex);
}

29 Operating System Concepts – NTHU LSA Lab

Chapter6 Synchronization

Using Condition Variable

 What really happens…
1. Lock mutex
2. Wait()

1. Put the thread into sleep &
 releases the lock
1. Waked up, but the thread is locked

1. Lock mutex
2. Signal()

action() {
 pthread_mutex_lock (&mutex)
 whild (x != 0)
 pthread_cond_wait (cond, mutex);
 pthread_mutex_unlock (&mutex);
 take_action();
}

counter() {
 pthread_mutex_lock (&mutex)
 x--;
 if (x==0)
 pthread_cond_signal (cond);
 pthread_mutex_unlock (&mutex);
}

30 Operating System Concepts – NTHU LSA Lab

Chapter6 Synchronization

Using Condition Variable

 What really happens…
1. Lock mutex
2. Wait()

1. Put the thread into sleep &
 releases the lock
1. Waked up, but the thread is locked
2. Re-acquire lock and resume execution

1. Lock mutex
2. Signal()
3. Releases the lock

action() {
 pthread_mutex_lock (&mutex)
 whild (x != 0)
 pthread_cond_wait (cond, mutex);
 pthread_mutex_unlock (&mutex);
 take_action();
}

counter() {
 pthread_mutex_lock (&mutex)
 x--;
 if (x==0)
 pthread_cond_signal (cond);
 pthread_mutex_unlock (&mutex);
}

31 Operating System Concepts – NTHU LSA Lab

Chapter6 Synchronization

Using Condition Variable

 What really happens…
1. Lock mutex
2. Wait()

1. Put the thread into sleep &
 releases the lock
1. Waked up, but the thread is locked
2. Re-acquire lock and resume execution

3. Release the lock

1. Lock mutex
2. Signal()
3. Releases the lock

action() {
 pthread_mutex_lock (&mutex)
 whild (x != 0)
 pthread_cond_wait (cond, mutex);
 pthread_mutex_unlock (&mutex);
 take_action();
}

counter() {
 pthread_mutex_lock (&mutex)
 x--;
 if (x==0)
 pthread_cond_signal (cond);
 pthread_mutex_unlock (&mutex);
}

32 Operating System Concepts – NTHU LSA Lab

Chapter6 Synchronization

Using Condition Variable

 What really happens…
1. Lock mutex
2. Wait()

1. Put the thread into sleep &
 releases the lock
1. Waked up, but the thread is locked
2. Re-acquire lock and resume execution

3. Release the lock

1. Lock mutex
2. Signal()
3. Releases the lock

action() {
 pthread_mutex_lock (&mutex)
 whild (x != 0)
 pthread_cond_wait (cond, mutex);
 pthread_mutex_unlock (&mutex);
 take_action();
}

counter() {
 pthread_mutex_lock (&mutex)
 x--;
 if (x==0)
 pthread_cond_signal (cond);
 pthread_mutex_unlock (&mutex);
}

Another reason why
condition variable op.
MUST within mutex lock

33 Operating System Concepts – NTHU LSA Lab

Chapter6 Synchronization

ThreadPool Implementation

Operating System Concepts – NTHU LSA Lab 34

Task structure
Threadpool structure

Allocate thread and task queue

Source: http://swind.code-life.info/posts/c-thread-pool.html

Chapter6 Synchronization

ThreadPool Implementation

Operating System Concepts – NTHU LSA Lab 35

Chapter6 Synchronization

ThreadPool Implementation

Operating System Concepts – NTHU LSA Lab 36

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 37

Synchronization HW

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 38

Hardware Support
 The CS problem occurs because the modification

of a shared variable may be interrupted

 If disable interrupts when in CS…
not feasible in multiprocessor machine
clock interrupts cannot fire in any machine

 HW support solution: atomic instructions
atomic: as one uninterruptible unit
examples: TestAndSet(var), Swap(a,b)

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 39

Atomic TestAndSet()

boolean TestAndSet (bool &lock) {
 bool value = lock ;
 lock = TRUE ;
 return value ;
}

execute atomically:

do { // P0
 while (TestAndSet (lock)) ;
 critical section
 lock = FALSE;
 remainder section
} while (1) ;

do { // P1
 while (TestAndSet (lock)) ;
 critical section
 lock = FALSE;
 remainder section
} while (1) ;

Shared data: boolean lock; //initially lock = FALSE; obtain lock

return the value of “lock”
and set “lock” to TRUE

release lock

Mutual exclusion? Progress? Bounded-Wait? Yes Yes No!

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 40

Atomic Swap()

do { // P0
 key0 = TRUE;
 while (key0 == TRUE)
 Swap (lock, key0) ;
 critical section
 lock = FALSE;
 remainder section
} while (1) ;

do { // P1
 key1 = TRUE;
 while (key1 == TRUE)
 Swap (lock, key1) ;
 critical section
 lock = FALSE;
 remainder section
} while (1) ;

•Idea: enter CS if lock==false:

Shared data: boolean lock; //initially lock = FALSE;

Mutual exclusion? Progress? Bounded-Wait? Yes Yes No!

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 41

Review Slide (2)

 Use software solution to solve CS?
 Peterson’s and Bakery algorithms

 Use HW support to solve CS?
 TestAndTest(), Swap()

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 42

Semaphores

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 43

Semaphore
 A tool to generalize the synchronization problem

(easier to solve, but no guarantee for correctness)
 More specifically…
 a record of how many units of a particular resource

are available
If #record = 1  binary semaphore, mutex lock
If #record > 1  counting semaphore

 accessed only through 2 atomic ops: wait & signal
 Spinlock implementation:
 Semaphore is an integer variable

wait (S) {
 while (S <= 0) ;
 S--;
}

signal (S) {
 S++;
} busy waiting

Chapter6 Synchronization

POSIX Semaphore
 Semaphore is part of POSIX standard BUT it is not

belonged to Pthread
 It can be used with or without thread

 POSIX Semaphore routines:
 sem_init(sem_t *sem, int pshared, unsigned int value)
 sem_wait(sem_t *sem)
 sem_post(sem_t *sem)
 sem_getvalue(sem_t *sem, int *valptr)
 sem_destory(sem_t *sem)

 Example:

Parallel Programming – NTHU LSA Lab

Initial value of the semaphore

Current value of the semaphore
#include <semaphore.h>
sem_t sem;
sem_init(&sem);
sem_wait(&sem);
 // critical section
sem_post(&sem);
sem_destory(&sem);

44

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 45

n-Process Critical Section Problem
 shared data:

semaphore mutex ; // initially mutex = 1
 Process Pi:

do {
 wait (mutex) ; // pthread_mutex_lock(&mutex)
 critical section
 signal (mutex); // pthread_mutex_unlock(&mutex)
 remainder section
} while (1) ;

Progress? Yes
Bounded waiting? Depends on the implementation of wait()

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 46

Non-busy waiting Implementation
 Semaphore is data struct with a queue

 may use any queuing strategy (FIFO, FILO, etc)

 wait() and signal()
 use system calls: block() and wakeup()
 must be executed atomically

E.g.,:
 Value = -3

L P0 P3 P5

void wait (semaphore S) {
 S.value--; // subtract first
 if (S.value < 0) {
 add this process to S.L ;
 sleep();
 }
}

void signal (semaphore S) {
 S.value++;
 if (S.value <= 0) {
 remove a process P from S.L ;
 wakeup(P);
 }
}

typedef struct {
 int value; // init to 0
 struct process *L ;
 // “PCB” queue
} semaphore ;

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 47

Atomic Operation

 How to ensure atomic wait & signal ops?
Single-processor: disable interrupts
Multi-processor:

HW support (e.g. Test-And-Set, Swap)
SW solution (Peterson’s solution, Bakery algorithm)

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 48

Semaphore with Critical Section
void wait (semaphore S) {
 entry-section();
 S.value--;
 if (S.value < 0) {
 add this process to S.L ;
 exit-section();
 sleep();
 }
 else {
 exit-section();
 }
}

void signal (semaphore S) {
 entry-section();
 S.value++;
 if (S.value <= 0)
 remove a process P from S.L;
 exit-section();
 wakeup(P);
 }
 else {
 exit-section();
 }
}

 Busy waiting for entry-section()?
 limited to only the CS of wait & signal (~10 instructions)
 very short period of time

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 49

Cooperation Synchronization
 P1 executes S1 ; P2 executes S2
 S2 be executed only after S1 has completed

 Implementation:
 shared var:
 semaphore sync ; // initially sync = 0

P1:
S1 ;
signal (sync) ;

P2:
wait (sync) ;
S2 ;

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 50

A More Complicated Example

P1

P7

P3

P6 P5

P4

P2

a b

c

f e d

g h

(Initially, all semaphores are 0)
begin
 P1: S1; signal(a); signal(b);
 P2: wait(a); S2; signal(c);
 P3: wait(b); S3; signal(d);
 P4: wait(c); S4; signal(e); signal(f);
 P5: wait(e); S5; signal(g);
 P6: wait(f); wait(d); S6; signal(h);
 P7: wait(g); wait(h); S7;
end

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 51

Deadlocks & Starvation

 Deadlocks: 2 processes are waiting indefinitely for
each other to release resources

 Starvation: example: LIFO queue in semaphore
process queue

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 52

Review Slide (3)

 What’s semaphore? 2 operations?
 What’s busy-waiting (spinlock) semaphore?
 What’s non-busy-waiting (non-spinlock)

semaphore?
 How to ensure atomic wait & signal ops?
 Deadlock? starvation?

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 53

Classical Synchronization
Problems

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 54

Listing & Purpose
 Purpose: used for testing newly proposed

synchronization scheme
 Bounded-Buffer (Producer-Consumer) Problem
 Reader-Writers Problem
 Dining-Philosopher Problem

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 55

Bounded-Buffer Problem
 A pool of n buffers, each capable of holding

one item
 Producer:
 grab an empty buffer
 place an item into the buffer
waits if no empty buffer is available

 Consumer:
 grab a buffer and retracts the item
 place the buffer back to the free pool
waits if all buffers are empty

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 56

Readers-Writers Problem
 A set of shared data objects
 A group of processes

 reader processes (read shared objects)
 writer processes (update shared objects)
 a writer process has exclusive access to a shared object

 Different variations involving priority
 first RW problem: no reader will be kept waiting unless a

writer is updating a shared object
 second RW problem: once a writer is ready, it performs the

updates as soon as the shared object is released
 writer has higher priority than reader
 once a writer is ready, no new reader may start reading

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 57

First Reader-Writer Algorithm
// mutual exclusion for write
semaphore wrt=1
// mutual exclusion for readcount
semaphore mutex=1
int readcount=0;

Writer(){
 while(TRUE){
 wait(wrt);

 // Writer Code

 signal(wrt);
 }
}

Reader(){
 while(TRUE){
 wait(mutex);
 readcount++;
 if(readcount==1)
 wait(wrt);
 signal(mutex);

 // Reader Code

 wait(mutex);
 readcount--;
 if(readcount==0)
 signal(wrt);
 signal(mutex);
 }
}  Readers share a single wrt lock

 Writer may have starvation problem

Acquire write lock
if reads haven’t

release write lock if
no more reads

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 58

Dining-Philosophers Problem
 5 persons sitting on 5 chairs with 5 chopsticks
 A person is either thinking or eating

 thinking: no interaction with the rest 4 persons
 eating: need 2 chopsticks at hand
 a person picks up 1 chopstick at a time
 done eating: put down both chopsticks

 deadlock problem
 one chopstick as one semaphore

 starvation problem

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 59

Monitors

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 60

Motivation
 Although semaphores provide a convenient

and effective synchronization mechanism, its
correctness is depending on the programmer
All processes access a shared data object must

execute wait() and signal() in the right order and
right place

 This may not be true because honest
programming error or uncooperative programmer

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 61

Monitor --- A high-level language construct
 The representation of a monitor type consists of

 declarations of variables whose values define the state of an
instance of the type

 Procedures/functions that implement operations on the type
 The monitor type is similar to a class in O.O. language

 A procedure within a monitor can access only local variables
and the formal parameters

 The local variables of a monitor can be used only by the local
procedures

 But, the monitor ensures that only one process at a
time can be active within the monitor

 Similar idea is incorporated to many prog. language:
 concurrent pascal, C# and Java

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 62

Monitor
 High-level synchronization construct that allows the

safe sharing of an abstract data type among
concurrent processes

monitor monitor-name {
 // shared variable declarations
 procedure body P1 (…) {
 . . .
 }
 procedure body P2 (…) {
 . . .
 }
 procedure body Pn (…) {
 . . .
 }
 initialization code {
 }
}

Schematic View Syntax

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 63

Monitor Condition Variables
 To allow a process to wait within the monitor, a

condition variable must be declared, as
 condition x, y;
 Condition variable can only be used with the

operations wait() and signal()
 x.wait();

means that the process invoking this operation is suspended
until another process invokes

 x.signal();
 resumes exactly one suspended process. If no process is

suspended, then the signal operation has no effect
 (In contrast, signal always change the state of a semaphore)

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 64

Monitor With Condition Variables

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 65

Dining Philosophers Example
 monitor dp {
 enum {thinking, hungry, eating} state[5]; //current state
 condition self[5]; //delay eating if can’t obtain chopsticks
 void pickup(int i) // pickup chopsticks
 void putdown(int i) // putdown chopsticks
 void test(int i) // try to eat
 void init() {
 for (int i = 0; i < 5; i++)
 state[i] = thinking;

 }
 }

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 66

void pickup(int i) {
 state[i] = hungry;
 test(i); //try to eat
 if (state[i] != eating)
 self[i].wait();//wait to eat
}

void putdown(int i) {
 state[i] = thinking;
 // check if neighbors
 // are waiting to eat
 test((i+4) % 5);
 test((i+1) % 5);
}

//try to let Pi eat (if it is hungry)
void test(int i) {
 if ((state[(i + 4) % 5] != eating) &&(state[(i + 1) % 5] != eating)
 && (state[i] == hungry)) {
 //No neighbors are eating and Pi is hungry
 state[i] = eating;
 self[i].signal();
 }
}

If Pi is suspended, resume it
If Pi is not suspended, no effect

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 67

thinking

P0 P1

P2

P3

P4

0
1

2

3 4 thinking

thinking

An illustration

P2:
DiningPhilosophers.pickup(2)
 eat
DiningPhilosophers.putdown(2)

thinking

thinking

P1:
DiningPhilosophers.pickup(1)
 eat
DiningPhilosophers.putdown(1)

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 68

thinking

P0 P1

P2

P3

P4

0
1

2

3 4 thinking

thinking

An illustration

P2:
DiningPhilosophers.pickup(2)
 eat
DiningPhilosophers.putdown(2)

thinking

P1:
DiningPhilosophers.pickup(1)
 eat
DiningPhilosophers.putdown(1)

void pickup(int i) {
 state[i] = hungry;
 test(i); //try to eat
 if (state[i] != eating)
 self[i].wait();//wait to eat
} hungry

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 69

thinking

P0 P1

P2

P3

P4

0
1

2

3 4 thinking

thinking

An illustration

P2:
DiningPhilosophers.pickup(2)
 eat
DiningPhilosophers.putdown(2)

thinking

P1:
DiningPhilosophers.pickup(1)
 eat
DiningPhilosophers.putdown(1)

void pickup(int i) {
 state[i] = hungry;
 test(i); //try to eat
 if (state[i] != eating)
 self[i].wait();//wait to eat
} eating

P1

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 70

thinking

P0 P1

P2

P3

P4

0
1

2

3 4 hungry  self[2].wait

thinking

An illustration

P2:
DiningPhilosophers.pickup(2)
 eat
DiningPhilosophers.putdown(2)

thinking

P1:
DiningPhilosophers.pickup(1)
 eat
DiningPhilosophers.putdown(1)

void pickup(int i) {
 state[i] = hungry;
 test(i); //try to eat
 if (state[i] != eating)
 self[i].wait();//wait to eat
} eating

P2

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 71

thinking

P0 P1

P2

P3

P4

0
1

2

3 4 hungry  self[2].wait

thinking

An illustration

P2:
DiningPhilosophers.pickup(2)
 eat
DiningPhilosophers.putdown(2)

thinking

P1:
DiningPhilosophers.pickup(1)
 eat
DiningPhilosophers.putdown(1)

void putdown(int i) {
 state[i] = thinking;
 // check if neighbors
 // are waiting to eat
 test((i+4) % 5); test((i+1) % 5);
} thinking

P1

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 72

thinking

P0 P1

P2

P3

P4

0
1

2

3 4 eating  self[2].signal

thinking

An illustration

P2:
DiningPhilosophers.pickup(2)
 eat
DiningPhilosophers.putdown(2)

thinking

P1:
DiningPhilosophers.pickup(1)
 eat
DiningPhilosophers.putdown(1)

void putdown(int i) {
 state[i] = thinking;
 // check if neighbors
 // are waiting to eat
 test((i+4) % 5); test((i+1) % 5);
} thinking

P1

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 73

thinking

P0 P1

P2

P3

P4

0
1

2

3 4 thinking

thinking

An illustration

P2:
DiningPhilosophers.pickup(2)
 eat
DiningPhilosophers.putdown(2)

thinking

P1:
DiningPhilosophers.pickup(1)
 eat
DiningPhilosophers.putdown(1)

thinking

Chapter6 Synchronization

Synchronized Tools in JAVA
 Synchronized Methods (Monitor)

 Synchronized method uses the method receiver as a lock
 Two invocations of synchronized methods cannot interleave

on the same object
 When one thread is executing a synchronized method for an

object, all other threads that invoke synchronized methods for
the same object block until the first thread exist the object

Parallel Programming – NTHU LSA Lab

public class SynchronizedCounter {
 private int c = 0;
 public synchronized void increment() { c++; }
 public synchronized void decrement() { c--; }
 public synchronized int value() { return c; }
}

74

Chapter6 Synchronization

Synchronized Tools in JAVA
 Synchronized Statement (Mutex Lock)

 Synchronized blocks uses the expression as a lock
 A synchronized Statement can only be executed once the

thread has obtained a lock for the object or the class that has
been referred to in the statement

 useful for improving concurrency with fine-grained
synchronization

Parallel Programming – NTHU LSA Lab

public void run()
{
 synchronized(p1)
 {
 int i = 10; // statement without locking requirement
 p1.display(s1);
 }
}

75

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 76

Review Slides (4)
 Bounded-buffer problem?
 Reader-Writer problem?
 Dining Philosopher problem?
 What is monitor and why need monitor?

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 77

Atomic Transactions

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 78

System Model
 Transaction: a collection of instructions
 (or instructions) that performs a single logic

function
 Atomic Transaction: operations happen as a

single logical unit of work, in its entirely, or
not at all

 Atomic transaction is particular a concern for
database system
Strong interest to use DB techniques in OS

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 79

File I/O Example
 Transaction is a series of read and write

operations

 Terminated by commit (transaction
successful) or abort (transaction failed)
operation

 Aborted transaction must be rolled back to
undo any changes it performed
 It is part of the responsibility of the system to

ensure this property

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 80

Log-Based Recovery
 Record to stable storage information about all

modifications by a transaction
 Stable storage: never lost its stored data

 Write-ahead logging: Each log record describes single
transaction write operation
 Transaction name
 Data item name
 Old & new values
 Special events: <Ti starts>, <Ti commits>

 Log is used to reconstruct the state of the data items
modified by the transactions
 Use undo (Ti), redo(Ti) to recover data

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 81

Checkpoints
 When failure occurs, must consult the log to

determine which transactions must be re-done
 Searching process is time consuming
 Redone may not be necessary for all transactions

 Use checkpoints to reduce the above overhead:
Output all log records to stable storage
Output all modified data to stable storage
Output a log record <checkpoint> to stable storage

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 82

Review Slides (5)
 What is atomic transaction?
 Purpose of commit, abort, rolled-back?
 How to use log and checkpoints?

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 83

Reading Material & HW
 Chap 6
 HWs
 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.9, 6.14, 6.20

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 84

Backup

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 85

Case Study:
 Solaris 2
 Windows XP

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 86

Solaris 2 Synchronization
 Implements a variety of locks to support multitasking,

multithreading (including real-time threads), and
multiprocessing.

 Uses adaptive mutexes for efficiency when
protecting data from short code segments.
 Mutex and semaphore always serialize data accesses

 Uses condition variables and readers-writers locks
when longer sections of code need access to data.
 Efficient for data that is accessed frequently, but in a read-

only manner

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 87

Solaris 2 Adaptive Mutex
 Multiprocessor system
Data locked (i.e. in use)

Locking thread is running  requesting thread spins on
the mutex (spinlock)
Locking thread is not in run state  requesting thread
blocks on the mutex (waiting lock)

 Uniprocessor system
 Requesting thread always blocks

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 88

Solaris 2 Turnstile
 Uses turnstiles to order the list of

threads waiting to acquire either an
adaptive mutex or reader-writer lock
 A turnstile is a queue structure
 containing threads blocked on a lock

 To prevent a priority inversion,
turnstiles are organized according to a
priority-inheritance protocol
 Temporarily inherit the priority of the

high-priority thread (blocked on this lock)

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 89

XP Synchronization
 Use interrupt masks to protect access to global

resources on uniprocessor systems (disable interrupt)
 Uses spinlocks on multiprocessor system
 Dispatcher objects: either in signaled or nonsignaled

state
 Signaled: object is available immediately
 Nonsignaled: object is not available
 Thread queue associated with each object
 WaitForSingleObject or WaitForMultipleObjects

	Operating System:�Chap6 Process Synchronization
	Overview
	Background
	Consumer & Producer Problem
	Concurrent Operations on counter
	Instruction Interleaving
	Race Condition
	Critical Section
	The Critical-Section Problem
	The Critical-Section Problem
	Critical Section Requirements
	Review Slides (1)
	Critical Section Solutions & �	Synchronization Tools
	Algorithm for Two Processes
	Peterson’s Solution for Two Processes
	Proof of Peterson’s Solution
	Proof of Peterson’s Solution
	Proof of Peterson’s Solution
	Producer/Consumer Problem
	Producer/Consumer Problem
	Producer/Consumer Problem
	Bakery Algorithm (n processes)
	Bakery Algorithm (n processes)
	Bakery Algorithm (n processes)
	Pthread Lock/Mutex Routines
	Condition Variables (CV)
	Using Condition Variable
	Using Condition Variable
	Using Condition Variable
	Using Condition Variable
	Using Condition Variable
	Using Condition Variable
	Using Condition Variable
	ThreadPool Implementation
	ThreadPool Implementation
	ThreadPool Implementation
	Synchronization HW
	Hardware Support
	Atomic TestAndSet()
	Atomic Swap()
	Review Slide (2)
	Semaphores
	Semaphore
	POSIX Semaphore
	n-Process Critical Section Problem
	Non-busy waiting Implementation
	Atomic Operation
	Semaphore with Critical Section
	Cooperation Synchronization
	A More Complicated Example
	Deadlocks & Starvation
	Review Slide (3)
	Classical Synchronization Problems
	Listing & Purpose
	Bounded-Buffer Problem
	Readers-Writers Problem
	First Reader-Writer Algorithm
	Dining-Philosophers Problem
	Monitors
	Motivation
	Monitor --- A high-level language construct
	Monitor
	Monitor Condition Variables
	Monitor With Condition Variables
	Dining Philosophers Example
	投影片編號 66
	An illustration
	An illustration
	An illustration
	An illustration
	An illustration
	An illustration
	An illustration
	Synchronized Tools in JAVA
	Synchronized Tools in JAVA
	Review Slides (4)
	Atomic Transactions
	System Model
	File I/O Example
	Log-Based Recovery
	Checkpoints
	Review Slides (5)
	Reading Material & HW
	Backup
	Case Study: �	Solaris 2�	Windows XP
	Solaris 2 Synchronization
	Solaris 2 Adaptive Mutex
	Solaris 2 Turnstile
	XP Synchronization

