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Overview 
 Background 
 Critical Section 
 Synchronization Hardware 
 Semaphores 
 Classical Problems of Synchronization 
 Monitors 
 Atomic Transactions 
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Background 
 Concurrent access to shared data may result 

in data inconsistency 

 Maintaining data consistency requires 
mechanism to ensure the orderly execution 
of cooperating processes 
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Consumer & Producer Problem 

/*consumer*/ 
while (1) { 
 while (counter == 0) ; 
     item = buffer[out]; 
     out = (out + 1) % BUFFER_SIZE; 
     counter--; 
} 

 Determine whether buffer is empty or full 
 Previously: use in, out position 
 Now: use count value 

/*producer*/ 
while (1) { 
    nextItem = getItem( ); 
    while (counter == BUFFER_SIZE) ; 
    buffer[in] = nextItem; 
    in = (in + 1) % BUFFER_SIZE; 
    counter++; 
} 
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Concurrent Operations on counter 
 The statement “counter++” may be implemented 

in machine language as: 
  move ax, counter 
  add    ax, 1 
      move counter, ax 

 The statement “counter--” may be implemented 
as: 

  move  bx, counter 
     sub     bx, 1 
     move  counter, bx 



Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 6 

Instruction Interleaving 
 Assume counter is initially 5. One interleaving of 

statement is: 
 producer:  move ax, counter      ax = 5 
     producer:  add ax, 1    ax = 6 
     context switch 
 consumer: move bx, counter     bx = 5 
     consumer: sub bx, 1                   bx = 4 
     context switch 
 producer: move counter, ax      counter = 6 
 context switch     
 consumer: move counter, bx     counter = 4 
 The value of counter may be either 4, 5, or 6, where the 

correct result should be 5 
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Race  Condition 
 Race condition: the situation where several 

processes access and manipulate shared data 
concurrently. The final value of the shared data 
depends upon which process finishes last 

 To prevent race condition, concurrent processes 
must be synchronized 
On a single-processor machine, we could disable 

interrupt  or use non-preemptive CPU scheduling 

 Commonly described as critical section problem 
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Critical Section 
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The Critical-Section Problem 
 Purpose: a protocol for processes to cooperate 
 Problem description: 
N processes are competing to use some shared data 
 Each process has a code segment, called critical 

section, in which the shared data is accessed 
 Ensure that when one process is executing in its 

critical section, no other process is allowed to 
execute in its critical section mutually exclusive 
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The Critical-Section Problem 

do { 
    entry section 
        critical section 
    exit section 
        remainder section 
} while (1); 

Get entry permission 

Modify shared data 

Release entry permission 

 General code section structure 
Only one process can be in a critical section 
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Critical Section Requirements 
1. Mutual Exclusion: if process P is executing in its CS, 

no other processes can be executing in their CS 
2. Progress: if no process is executing in its CS and 

there exist some processes that wish to enter their 
CS, these processes cannot be postponed 
indefinitely 

3. Bounded Waiting: A bound must exist on the 
number of times that other processes are allowed 
to enter their CS after a process has made a 
request to enter its CS 

 How to design entry and exist section to satisfy the 
above requirement? 
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Review Slides (1) 

 Race condition? 
 Critical-Section (CS) problem? 4 sections? 
 entry, CS, exit, remainder 

 3 requirements for solutions to CS problems? 
mutual exclusion 
 progress 
 bounded waiting 
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Critical Section Solutions &  
 Synchronization Tools 
 Software Solution 
 Synchronization Hardware 
 Semaphore 
 Monitor 
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Algorithm for Two Processes 

/* Process 0 */ 
do { 
   while (turn != 0) ; 
      critical section 
   turn = 1; 
      remainder section 
} while (1)  

/* Process 1 */ 
do { 
   while (turn != 1) ; 
      critical section 
   turn = 0; 
      remainder section 
} while (1)  

Mutual exclusion?         Progress?       
    Bounded-Wait? 

 Only 2  processes, P0 and P1 
 Shared variables  

 int turn; //initially turn = 0 
 turn = i ⇒ Pi can enter its critical section 

entry 
section 

exit 
section 

Yes No 
Yes 
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Peterson’s Solution for Two Processes 
 Shared variables  
 int turn; //initially turn = 0 
 turn = i ⇒ Pi can enter its critical section 
 boolean flag[2]; //initially flag [0] = flag [1] = false 
 flag [i] = true ⇒ Pi ready to enter its critical section 

//Pi: 
do { 
  flag[ i ] = TRUE; 
  turn = j ; 
  while (flag [ j ] &&  
 turn == j ) ; 
     critical section 
  flag [ i ] = FALSE ; 
     remainder section 
}  while (1) ; 

Enter CS when either: 
1. a process gets its turn  
2. the other process is not ready  
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Proof of Peterson’s Solution 

/* process 0 */ 
do { 
  flag[ 0 ] = TRUE; 
  turn = 1 ; 
  while (flag [ 1 ] && turn == 1 ) ; 
     critical section 
  flag [ 0 ] = FALSE ; 
     remainder section 
}  while (1) ; 

/* process 1 */ 
do { 
  flag[ 1 ] = TRUE; 
  turn = 0 ; 
  while (flag [ 0 ] && turn == 0 ) ; 
     critical section 
  flag [ 1 ] = FALSE ; 
     remainder section 
}  while (1) ; 

 Mutual exclusion: 
 If P0 CS  flag[1] == false || turn == 0 
 If P1 CS  flag[0] == false || turn == 1 

 Assume both processes in CS  flag[0] == flag[1] == true 
  turn==0 for P0 to enter, turn==1 for P1 to enter 

 However, ”turn” will be either 0 or 1 because its value will be set for both 
processes, but only one value will last 

 Therefore, P0 ,P1 can’t in CS at the same time! 
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Proof of Peterson’s Solution 
 Progress (e.g., P0 wishes to enter its CS): 

(1) If P1 is not ready  flag[1] = false  P0 can enter 
(2) If both are ready  flag[0] == flag[1] == true 

If trun ==0 then P0 enters, otherwise P1 enters 
 Either cases, some waiting process can enter CS! 

/* process 0 */ 
do { 
  flag[ 0 ] = TRUE; 
  turn = 1 ; 
  while (flag [ 1 ] && turn == 1 ) ; 
     critical section 
  flag [ 0 ] = FALSE ; 
     remainder section 
}  while (1) ; 

/* process 1 */ 
do { 
  flag[ 1 ] = TRUE; 
  turn = 0 ; 
  while (flag [ 0 ] && turn == 0 ) ; 
     critical section 
  flag [ 1 ] = FALSE ; 
     remainder section 
}  while (1) ; 

(1) 

(2) 
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Proof of Peterson’s Solution 
 Bounded waiting (e.g., P0 wishes to enter its CS): 

(1) Once P1 exits CS  flag[1]==false  P0 can enter 
(2) If P1 exits CS && reset flag[1]=true  
  turn==0 (overwrite P0 setting) P0 can enter 
 P0 won’t wait indefinitely! 

/* process 0 */ 
do { 
  flag[ 0 ] = TRUE; 
  turn = 1 ; 
  while (flag [ 1 ] && turn == 1 ) ; 
     critical section 
  flag [ 0 ] = FALSE ; 
     remainder section 
}  while (1) ; 

/* process 1 */ 
do { 
  flag[ 1 ] = TRUE; 
  turn = 0 ; 
  while (flag [ 0 ] && turn == 0 ) ; 
     critical section 
  flag [ 1 ] = FALSE ; 
     remainder section 
}  while (1) ; 

(1) 

(2) 
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Producer/Consumer Problem 

 Producer process 
while (TRUE) { 
 entry-section( ); 
 nextItem = getItem( ); 
 while (counter == BUFFER_SIZE); 
 buffer[in] = nextItem; 
 in = (in + 1) % BUFFER_SIZE; 
 counter++; 
     computing(); 
 exit-section( ); 
} 
 

 Consumer process 
while (TRUE) { 
 entry-section( );         
 while (counter == 0) ; 
 item = buffer[out]; 
 out = (out + 1) % BUFFER_SIZE; 
 counter--; 
     computing(); 
 exit-section( ); 
} 

 Incorrect: deadlock, if consumer enters the CS first. 
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Producer/Consumer Problem 

 Producer process 
while (TRUE) { 
 nextItem = getItem( ); 
 while (counter == BUFFER_SIZE); 
 buffer[in] = nextItem; 
 in = (in + 1) % BUFFER_SIZE; 
     entry-section( ); 
 counter++; 
     computing(); 
 exit-section( ); 
} 
 

 Consumer process 
while (TRUE) { 
 while (counter == 0); 
 item = buffer[out]; 
 out = (out + 1) % BUFFER_SIZE; 
     entry-section( ); 
 counter--; 
     computing(); 
 exit-section( ); 
} 

 Correct but poor performance 
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Producer/Consumer Problem 

 Correct & Maximize concurrent performance 

 Producer process 
while (TRUE) { 
 nextItem = getItem( ); 
 while (counter == BUFFER_SIZE); 
 buffer[in] = nextItem; 
 in = (in + 1) % BUFFER_SIZE; 
 entry-section( ); 
 counter++; 
 exit-section( ); 
     computing(); 
} 

 Consumer process 
while (TRUE) { 
 while (counter == 0) ; 
 item = buffer[out]; 
 out = (out + 1) % BUFFER_SIZE; 
 entry-section( );         
 counter--; 
 exit-section( ); 
     computing(); 
} 
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Bakery Algorithm (n processes) 
 Before enter its CS, each process receives a # 
 Holder of the smallest # enters CS 
 The numbering scheme always generates # in 

non-decreasing order; i.e., 1,2,3,3,4,5,5,5 
 If processes Pi and Pj receive the same #, if i < j, 

then Pi is served first  
 Notation:  
 (a, b) < (c, d) if a < c or if a == c && b < d 
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Bakery Algorithm (n processes) 
//Process i:  
do { 
   choosing [ i ] = TRUE ; 
   num[ i ] = max(num[0],num[1],…,num[n-1]) + 1; 
   choosing [ i ] = FALSE ; 
   for (j = 0; j < n; j++) { 
      while (choosing [ j ] ) ; 
      while ((num[ j ] != 0) && 
                 ((num[ j ], j) < (num[ i ], i))) ; 
   } 
       critical section 
   num[ i ] = 0 ; 
       reminder section 
} while (1) ; 

 Bounded-waiting because processes enter CS on a 
First-Come, First Served basis 

Get ticket 

FCFS 
Cannot compare when 
num is being modified 

release 
ticket 
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Bakery Algorithm (n processes) 
 Why cannot compare when num is being modified? 
 Without locking… 

 1. Let 5 be the current maximum number 
 2. If P1 and P4 take number together, but P4 finishes before P1 

P1 = 0; P4 = 6  P4 will enter the CS 

 3. After P1 takes the number 
P1 = P4 = 6  P1 will enter the CS as well!!! 

 With locking… 
 P4 will have to wait until P1 finish taking the number 
 Both P1 & P4 will have the new number “6” before comparison 
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Pthread Lock/Mutex Routines 
 To use mutex, it must be declared as of type pthread_mutex_t 

and initialized with pthread_mutex_init() 
 A mutex is destroyed with pthread_mutex_destory() 
 A critical section can then be protected using 

pthread_mutex_lock() and pthread_mutex_unlock() 
 Example:  

specify default 
attribute for the mutex 

#include “pthread.h” 
pthread_mutex   mutex; 
pthread_mutex_init (&mutex, NULL); 
pthread_mutex_lock(&mutex);  // enter critical section 
 
 
pthread_mutex_unlock(&mutex); // leave critical section 
pthread_mutex_destory(&mutex); 

Critical Section 
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Condition Variables (CV) 
 CV represent some condition that a thread can: 

 Wait on, until the condition occurs; or  
 Notify other waiting threads that the condition has occurred 

 Three operations on condition variables: 
 wait() --- Block until another thread calls signal() or broadcast() 

on the CV 
 signal() --- Wake up one thread waiting on the CV 
 broadcast() --- Wake up all threads waiting on the CV 

 In Pthread, CV type is a pthread_cond_t 
 Use pthread_cond_init() to initialize 
 pthread_cond_wait (&theCV, &somelock) 
 pthread_cond_signal (&theCV) 
 pthread_cond_broadcast (&theCV) 
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Using Condition Variable 
 Example: 

 A threads is designed to take action when x=0 
 Another thread is responsible for decrementing the counter 

 
 
 
 
 
 
 

 

 All condition variable operation MUST be performed while a 
mutex is locked!!! 

action() { 
    pthread_mutex_lock (&mutex) 
    if (x != 0) 
        pthread_cond_wait (cond, mutex); 
    pthread_mutex_unlock (&mutex); 
    take_action(); 
} 

counter() { 
  pthread_mutex_lock (&mutex) 
  x--; 
  if (x==0)  
      pthread_cond_signal (cond); 
  pthread_mutex_unlock (&mutex); 
} 

pthread_cond_t    cond;   pthread_mutex_t    mutex; 
pthread_cond_init (cond, NULL);  pthread_mutex_init (mutex, NULL); 
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Using Condition Variable 

 What really happens… 
1. Lock mutex 

action() { 
    pthread_mutex_lock (&mutex) 
    whild (x != 0) 
        pthread_cond_wait (cond, mutex); 
    pthread_mutex_unlock (&mutex); 
    take_action(); 
} 

counter() { 
  pthread_mutex_lock (&mutex) 
  x--; 
  if (x==0)  
      pthread_cond_signal (cond); 
  pthread_mutex_unlock (&mutex); 
} 
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Using Condition Variable 

 What really happens… 
1. Lock mutex 
2. Wait() 

1. Put the thread into sleep &  
 releases the lock 

1. Lock mutex 

action() { 
    pthread_mutex_lock (&mutex) 
    whild (x != 0) 
        pthread_cond_wait (cond, mutex); 
    pthread_mutex_unlock (&mutex); 
    take_action(); 
} 

counter() { 
  pthread_mutex_lock (&mutex) 
  x--; 
  if (x==0)  
      pthread_cond_signal (cond); 
  pthread_mutex_unlock (&mutex); 
} 
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Using Condition Variable 

 What really happens… 
1. Lock mutex 
2. Wait() 

1. Put the thread into sleep &  
 releases the lock 
1. Waked up, but the thread is locked 

1. Lock mutex 
2. Signal() 

action() { 
    pthread_mutex_lock (&mutex) 
    whild (x != 0) 
        pthread_cond_wait (cond, mutex); 
    pthread_mutex_unlock (&mutex); 
    take_action(); 
} 

counter() { 
  pthread_mutex_lock (&mutex) 
  x--; 
  if (x==0)  
      pthread_cond_signal (cond); 
  pthread_mutex_unlock (&mutex); 
} 
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Using Condition Variable 

 What really happens… 
1. Lock mutex 
2. Wait() 

1. Put the thread into sleep &  
 releases the lock 
1. Waked up, but the thread is locked 
2. Re-acquire lock and resume execution 

1. Lock mutex 
2. Signal() 
3. Releases the lock 

action() { 
    pthread_mutex_lock (&mutex) 
    whild (x != 0) 
        pthread_cond_wait (cond, mutex); 
    pthread_mutex_unlock (&mutex); 
    take_action(); 
} 

counter() { 
  pthread_mutex_lock (&mutex) 
  x--; 
  if (x==0)  
      pthread_cond_signal (cond); 
  pthread_mutex_unlock (&mutex); 
} 
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Using Condition Variable 

 What really happens… 
1. Lock mutex 
2. Wait() 

1. Put the thread into sleep &  
 releases the lock 
1. Waked up, but the thread is locked 
2. Re-acquire lock and resume execution 

3. Release the lock 

1. Lock mutex 
2. Signal() 
3. Releases the lock 

action() { 
    pthread_mutex_lock (&mutex) 
    whild (x != 0) 
        pthread_cond_wait (cond, mutex); 
    pthread_mutex_unlock (&mutex); 
    take_action(); 
} 

counter() { 
  pthread_mutex_lock (&mutex) 
  x--; 
  if (x==0)  
      pthread_cond_signal (cond); 
  pthread_mutex_unlock (&mutex); 
} 
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Using Condition Variable 

 What really happens… 
1. Lock mutex 
2. Wait() 

1. Put the thread into sleep &  
 releases the lock 
1. Waked up, but the thread is locked 
2. Re-acquire lock and resume execution 

3. Release the lock 

1. Lock mutex 
2. Signal() 
3. Releases the lock 

action() { 
    pthread_mutex_lock (&mutex) 
    whild (x != 0) 
        pthread_cond_wait (cond, mutex); 
    pthread_mutex_unlock (&mutex); 
    take_action(); 
} 

counter() { 
  pthread_mutex_lock (&mutex) 
  x--; 
  if (x==0)  
      pthread_cond_signal (cond); 
  pthread_mutex_unlock (&mutex); 
} 

Another reason why 
condition variable op. 
MUST within mutex lock 
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ThreadPool Implementation 
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Task structure 
Threadpool structure 

Allocate thread and task queue 

Source: http://swind.code-life.info/posts/c-thread-pool.html 
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ThreadPool Implementation 
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ThreadPool Implementation 
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Synchronization HW 
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Hardware Support 
 The CS problem occurs because the modification 

of a shared variable may be interrupted 

 If disable interrupts when in CS… 
not feasible in multiprocessor machine 
clock interrupts cannot fire in any machine 

 HW support solution: atomic instructions 
atomic: as one uninterruptible unit 
examples: TestAndSet(var), Swap(a,b) 
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Atomic TestAndSet() 

boolean TestAndSet ( bool  &lock) { 
    bool  value = lock ; 
    lock = TRUE ; 
    return value ; 
} 

execute atomically: 
 

do {   // P0 
   while (TestAndSet (lock) ) ; 
      critical section 
   lock = FALSE; 
      remainder section 
} while (1) ; 

do {   // P1 
   while (TestAndSet (lock) ) ; 
      critical section 
   lock = FALSE; 
      remainder section 
} while (1) ; 

Shared data: boolean lock; //initially lock = FALSE; obtain lock 

return the value of “lock” 
and set “lock” to TRUE 

release lock 

Mutual exclusion?         Progress?         Bounded-Wait? Yes Yes No! 
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Atomic Swap() 

do {  // P0 
   key0 = TRUE;  
   while (key0 == TRUE) 
        Swap (lock, key0) ;  
      critical section 
   lock = FALSE; 
      remainder section 
} while (1) ; 

do {  // P1 
   key1 = TRUE;  
   while (key1 == TRUE) 
        Swap (lock, key1) ;  
      critical section 
   lock = FALSE; 
      remainder section 
} while (1) ; 

•Idea: enter CS if lock==false: 

Shared data: boolean lock; //initially lock = FALSE; 

Mutual exclusion?         Progress?         Bounded-Wait? Yes Yes No! 
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Review Slide (2) 

 Use software solution to solve CS? 
 Peterson’s and Bakery algorithms 

 Use HW support to solve CS? 
 TestAndTest(), Swap() 
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Semaphores 
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Semaphore 
 A tool to generalize the synchronization problem 

(easier to solve, but no guarantee for correctness) 
 More specifically… 
 a record of how many units of a particular resource 

are available 
If #record = 1  binary semaphore, mutex lock 
If #record > 1  counting semaphore 

 accessed only through 2 atomic ops: wait & signal 
 Spinlock implementation: 
 Semaphore is an integer variable 

wait (S) { 
   while (S <= 0) ; 
   S--; 
} 

signal (S) { 
   S++; 
} busy waiting 
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POSIX Semaphore 
 Semaphore is part of POSIX standard BUT it is not 

belonged to Pthread 
 It can be used with or without thread 

 POSIX Semaphore routines: 
 sem_init(sem_t *sem, int pshared, unsigned int value) 
 sem_wait(sem_t *sem) 
 sem_post(sem_t *sem) 
 sem_getvalue(sem_t *sem, int *valptr) 
 sem_destory(sem_t *sem) 

 Example: 
 

Parallel Programming – NTHU LSA Lab 

Initial value of the semaphore 

Current value of the semaphore 
#include <semaphore.h> 
sem_t  sem; 
sem_init(&sem); 
sem_wait(&sem); 
     // critical section 
sem_post(&sem); 
sem_destory(&sem); 

44 
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n-Process Critical Section Problem 
 shared data: 

semaphore mutex ;  // initially mutex = 1 
 Process Pi: 

do { 
   wait (mutex) ;  // pthread_mutex_lock(&mutex) 
        critical section 
   signal (mutex); // pthread_mutex_unlock(&mutex) 
        remainder section 
} while (1) ; 

Progress? Yes 
Bounded waiting? Depends on the implementation of wait() 
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Non-busy waiting Implementation 
 Semaphore is data struct with a queue 

 may use any queuing strategy (FIFO, FILO, etc) 
 

 
 
 

 wait() and signal()  
 use system calls: block() and wakeup() 
 must be executed atomically 

E.g.,: 
    Value = -3 

L P0 P3 P5 

void wait (semaphore S) { 
    S.value--; // subtract first 
    if (S.value < 0) { 
      add this process to S.L ; 
      sleep( ); 
   } 
} 

void signal (semaphore S) { 
   S.value++; 
   if (S.value <= 0) { 
      remove a process P from S.L ; 
      wakeup(P); 
   } 
} 

typedef struct {   
      int value; // init to 0 
      struct process *L ;  
 // “PCB” queue 
} semaphore ; 
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Atomic Operation 

 How to ensure atomic wait & signal ops? 
Single-processor: disable interrupts  
Multi-processor:  

HW support (e.g. Test-And-Set, Swap) 
SW solution (Peterson’s solution, Bakery algorithm) 
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Semaphore with Critical Section 
void wait (semaphore S) { 
    entry-section( ); 
    S.value--; 
    if (S.value < 0) { 
      add this process to S.L ; 
      exit-section( ); 
      sleep( ); 
   } 
   else { 
      exit-section( ); 
   } 
} 

void signal (semaphore S) { 
   entry-section( ); 
   S.value++; 
   if (S.value <= 0) 
      remove a process P from S.L; 
      exit-section( ); 
      wakeup(P); 
   } 
   else { 
      exit-section( ); 
   } 
} 

 Busy waiting for entry-section()? 
 limited to only the CS of wait & signal (~10 instructions) 
 very short period of time 
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Cooperation Synchronization 
 P1 executes S1 ;  P2 executes S2 
 S2 be executed only after S1 has completed 

 Implementation: 
 shared var:  
      semaphore sync ; // initially sync = 0 

P1: 
S1 ; 
signal (sync) ; 

P2: 
wait (sync) ; 
S2 ; 
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A More Complicated Example 

P1 

P7 

P3 

P6 P5 

P4 

P2 

a b 

c 

f e d 

g h 

(Initially, all semaphores are 0) 
begin 
 P1: S1; signal(a); signal(b); 
 P2: wait(a); S2; signal(c); 
 P3: wait(b); S3; signal(d); 
 P4: wait(c); S4; signal(e); signal(f); 
 P5: wait(e); S5; signal(g); 
 P6: wait(f); wait(d); S6; signal(h); 
 P7: wait(g); wait(h); S7; 
end 
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Deadlocks & Starvation 

 Deadlocks: 2 processes are waiting indefinitely for 
each other to release resources 

 Starvation: example: LIFO queue in semaphore 
process queue 
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Review Slide (3) 

 What’s semaphore? 2 operations? 
 What’s busy-waiting (spinlock) semaphore? 
 What’s non-busy-waiting (non-spinlock) 

semaphore? 
 How to ensure atomic wait & signal ops? 
 Deadlock? starvation? 
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Classical Synchronization 
Problems 
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Listing & Purpose 
 Purpose: used for testing newly proposed 

synchronization scheme 
 Bounded-Buffer (Producer-Consumer) Problem 
 Reader-Writers Problem 
 Dining-Philosopher Problem 
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Bounded-Buffer Problem 
 A pool of n buffers, each capable of holding 

one item 
 Producer:  
 grab an empty buffer 
 place an item into the buffer 
waits if no empty buffer is available 

  Consumer: 
 grab a buffer and retracts the item 
 place the buffer back to the free pool 
waits if all buffers are empty 
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Readers-Writers Problem 
 A set of shared data objects 
 A group of processes 

 reader processes (read shared objects) 
 writer processes (update shared objects) 
 a writer process has exclusive access to a shared object 

 Different variations involving priority 
 first RW problem: no reader will be kept waiting unless a 

writer is updating a shared object 
 second RW problem: once a writer is ready, it performs the 

updates as soon as the shared object is released 
 writer has higher priority than reader 
 once a writer is ready, no new reader may start reading 
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First Reader-Writer Algorithm 
// mutual exclusion for write  
semaphore wrt=1 
// mutual exclusion for readcount 
semaphore mutex=1 
int readcount=0; 
 
Writer(){ 
    while(TRUE){ 
        wait(wrt); 

 // Writer Code 

        signal(wrt); 
    } 
} 

Reader(){ 
  while(TRUE){ 
     wait(mutex); 
         readcount++; 
         if(readcount==1) 
             wait(wrt); 
     signal(mutex); 

 // Reader Code 

     wait(mutex); 
         readcount--; 
         if(readcount==0) 
             signal(wrt); 
     signal(mutex); 
   } 
}  Readers share a single wrt lock 

 Writer may have starvation problem 

Acquire write lock 
if reads haven’t 

release write lock if 
no more reads 
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Dining-Philosophers Problem 
 5 persons sitting on 5 chairs with 5 chopsticks 
 A person is either thinking or eating 

 thinking: no interaction with the rest 4 persons 
 eating: need 2 chopsticks at hand 
 a person picks up 1 chopstick at a time 
 done eating: put down both chopsticks 

 deadlock problem 
 one chopstick as one semaphore 

 starvation problem 
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Monitors 
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Motivation 
 Although semaphores provide a convenient 

and effective synchronization mechanism, its 
correctness is depending on the programmer 
All processes access a shared data object must 

execute wait() and signal() in the right order and 
right place 

 This may not be true because honest 
programming error or uncooperative programmer 
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Monitor --- A high-level language construct 
 The representation of a monitor type consists of  

 declarations of variables whose values define the state of an 
instance of the type 

 Procedures/functions that implement operations on the type 
 The monitor type is similar to a class in O.O. language 

 A procedure within a monitor can access only local variables 
and the formal parameters 

 The local variables of a monitor can be used only by the local 
procedures 

 But, the monitor ensures that only one process at a 
time can be active within the monitor 

 Similar idea is incorporated to many prog. language: 
 concurrent pascal, C# and Java 
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Monitor 
 High-level synchronization construct that allows the 

safe sharing of an abstract data type among 
concurrent processes   

monitor monitor-name { 
 // shared variable declarations
 procedure body P1 (…) { 
  . . . 
 } 
 procedure body P2 (…) { 
  . . . 
 }  
 procedure body Pn (…) { 
   . . . 
 }     
 initialization code { 
 } 
} 

Schematic View Syntax 
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Monitor Condition Variables 
 To allow a process to wait within the monitor, a 

condition variable must be declared, as 
  condition x, y; 
 Condition variable can only be used with the 

operations wait() and signal() 
 x.wait(); 

means that the process invoking this operation is suspended 
until another process invokes 

 x.signal(); 
 resumes exactly one suspended process.  If no process is 

suspended, then the signal operation has no effect 
 (In contrast, signal always change the state of a semaphore) 
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Monitor With Condition Variables 
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Dining Philosophers Example 
 monitor dp { 
  enum {thinking, hungry, eating} state[5]; //current state 
  condition self[5]; //delay eating if can’t obtain chopsticks 
  void pickup(int i)  // pickup chopsticks 
  void putdown(int i)  // putdown chopsticks 
  void test(int i)   // try to eat 
  void init() { 
   for (int i = 0; i < 5; i++) 
    state[i] = thinking; 

  } 
 } 
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void pickup(int i) { 
    state[i] = hungry; 
    test(i); //try to eat 
  if (state[i] != eating) 
      self[i].wait();//wait to eat 
} 

void putdown(int i) { 
    state[i] = thinking;  
    // check if neighbors  
    // are waiting to eat 
    test((i+4) % 5); 
    test((i+1) % 5); 
} 

//try to let Pi eat (if it is hungry)  
void test(int i) { 
    if ( (state[(i + 4) % 5] != eating) &&(state[(i + 1) % 5] != eating) 
     && (state[i] == hungry) ) { 
  //No neighbors are eating and Pi is hungry 
  state[i] = eating; 
  self[i].signal(); 
 } 
} 

If Pi  is suspended, resume it 
If Pi  is not suspended, no effect 
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thinking 

P0 P1 

P2 

P3 

P4 

0 
1 

2 

3 4 thinking 

thinking 

An illustration 

P2: 
DiningPhilosophers.pickup(2) 
 eat 
DiningPhilosophers.putdown(2) 

thinking 

thinking 

P1: 
DiningPhilosophers.pickup(1) 
 eat 
DiningPhilosophers.putdown(1) 
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thinking 

P0 P1 

P2 

P3 

P4 

0 
1 

2 

3 4 thinking 

thinking 

An illustration 

P2: 
DiningPhilosophers.pickup(2) 
 eat 
DiningPhilosophers.putdown(2) 

thinking 

P1: 
DiningPhilosophers.pickup(1) 
 eat 
DiningPhilosophers.putdown(1) 

void pickup(int i) { 
    state[i] = hungry; 
    test(i); //try to eat 
    if (state[i] != eating) 
     self[i].wait();//wait to eat 
} hungry 
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thinking 

P0 P1 

P2 

P3 

P4 

0 
1 

2 

3 4 thinking 

thinking 

An illustration 

P2: 
DiningPhilosophers.pickup(2) 
 eat 
DiningPhilosophers.putdown(2) 

thinking 

P1: 
DiningPhilosophers.pickup(1) 
 eat 
DiningPhilosophers.putdown(1) 

void pickup(int i) { 
    state[i] = hungry; 
    test(i); //try to eat 
    if (state[i] != eating) 
 self[i].wait();//wait to eat 
} eating 

P1 
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thinking 

P0 P1 

P2 

P3 

P4 

0 
1 

2 

3 4 hungry  self[2].wait 

thinking 

An illustration 

P2: 
DiningPhilosophers.pickup(2) 
 eat 
DiningPhilosophers.putdown(2) 

thinking 

P1: 
DiningPhilosophers.pickup(1) 
 eat 
DiningPhilosophers.putdown(1) 

void pickup(int i) { 
    state[i] = hungry; 
    test(i); //try to eat 
    if (state[i] != eating) 
 self[i].wait();//wait to eat 
} eating 

P2 
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thinking 

P0 P1 

P2 

P3 

P4 

0 
1 

2 

3 4 hungry  self[2].wait 

thinking 

An illustration 

P2: 
DiningPhilosophers.pickup(2) 
 eat 
DiningPhilosophers.putdown(2) 

thinking 

P1: 
DiningPhilosophers.pickup(1) 
 eat 
DiningPhilosophers.putdown(1) 

void putdown(int i) { 
    state[i] = thinking;  
    // check if neighbors  
    // are waiting to eat 
    test((i+4) % 5); test((i+1) % 5); 
} thinking 

P1 
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thinking 

P0 P1 

P2 

P3 

P4 

0 
1 

2 

3 4 eating  self[2].signal 

thinking 

An illustration 

P2: 
DiningPhilosophers.pickup(2) 
 eat 
DiningPhilosophers.putdown(2) 

thinking 

P1: 
DiningPhilosophers.pickup(1) 
 eat 
DiningPhilosophers.putdown(1) 

void putdown(int i) { 
    state[i] = thinking;  
    // check if neighbors  
    // are waiting to eat 
    test((i+4) % 5); test((i+1) % 5); 
} thinking 

P1 
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thinking 

P0 P1 

P2 

P3 

P4 

0 
1 

2 

3 4 thinking 

thinking 

An illustration 

P2: 
DiningPhilosophers.pickup(2) 
 eat 
DiningPhilosophers.putdown(2) 

thinking 

P1: 
DiningPhilosophers.pickup(1) 
 eat 
DiningPhilosophers.putdown(1) 

thinking 
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Synchronized Tools in JAVA 
 Synchronized Methods (Monitor) 

 Synchronized method uses the method receiver as a lock 
 Two invocations of synchronized methods cannot interleave 

on the same object 
 When one thread is executing a synchronized method for an 

object, all other threads that invoke synchronized methods for 
the same object block until the first thread exist the object 

 
 

 
 

Parallel Programming – NTHU LSA Lab 

public class SynchronizedCounter {  
 private int c = 0;  
 public synchronized void increment() { c++; }  
 public synchronized void decrement() { c--; }  
 public synchronized int value() { return c; }  
} 

74 
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Synchronized Tools in JAVA 
 Synchronized Statement (Mutex Lock) 

 Synchronized blocks uses the expression as a lock 
 A synchronized Statement can only be executed once the 

thread has obtained a lock for the object or the class that has 
been referred to in the statement 

 useful for improving concurrency with fine-grained 
synchronization 

Parallel Programming – NTHU LSA Lab 

public void run()  
{ 
     synchronized(p1) 
     {                       
             int i = 10; // statement without locking requirement 
             p1.display(s1);  
      } 
} 

75 
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Review Slides (4) 
 Bounded-buffer problem? 
 Reader-Writer problem? 
 Dining Philosopher problem? 
 What is monitor and why need monitor? 



Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 77 

Atomic Transactions 
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System Model 
 Transaction: a collection of instructions  
 (or instructions) that performs a single logic 

function 
 Atomic Transaction: operations happen as a 

single logical unit of work, in its entirely, or 
not at all 

 Atomic transaction is particular a concern for 
database system 
Strong interest to use DB techniques in OS 
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File I/O Example 
 Transaction is a series of read and write 

operations 

 Terminated by commit  (transaction 
successful) or abort (transaction failed) 
operation 

 Aborted transaction must be rolled back to 
undo any changes it performed 
 It is part of the responsibility of the system to 

ensure this property 
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Log-Based Recovery 
 Record to stable storage information about all 

modifications by a transaction 
 Stable storage: never lost its stored data  

 Write-ahead logging: Each log record describes single 
transaction write operation 
 Transaction name 
 Data item name 
 Old & new values 
 Special events: <Ti starts>, <Ti commits> 

 Log is used to reconstruct the state of the data items 
modified by the transactions 
 Use undo (Ti), redo(Ti) to recover data 
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Checkpoints 
 When failure occurs, must consult the log to 

determine which transactions must be re-done 
 Searching process is time consuming 
 Redone may not be necessary for all transactions 

 Use checkpoints to reduce the above overhead: 
Output all log records to stable storage 
Output all modified data to stable storage 
Output a log record <checkpoint> to stable storage 
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Review Slides (5) 
 What is atomic transaction? 
 Purpose of commit, abort, rolled-back? 
 How to use log and checkpoints? 
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Reading Material & HW 
 Chap 6 
 HWs 
 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.9, 6.14, 6.20 
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Backup 
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Case Study:  
 Solaris 2 
 Windows XP 
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Solaris 2 Synchronization 
 Implements a variety of locks to support multitasking, 

multithreading (including real-time threads), and 
multiprocessing. 

 Uses adaptive mutexes for efficiency when 
protecting data from short code segments. 
 Mutex and semaphore always serialize data accesses 

 Uses condition variables and readers-writers locks 
when longer sections of code need access to data. 
 Efficient for data that is accessed frequently, but in a read-

only manner 



Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 87 

Solaris 2 Adaptive Mutex 
 Multiprocessor system 
Data locked (i.e. in use) 

Locking thread is running  requesting thread spins on 
the mutex (spinlock) 
Locking thread is not in run state  requesting thread 
blocks on the mutex (waiting lock) 

 Uniprocessor system 
 Requesting thread always blocks 
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Solaris 2 Turnstile 
 Uses turnstiles to order the list of 

threads waiting to acquire either an 
adaptive mutex or reader-writer lock 
 A turnstile is a queue structure  
 containing threads blocked on a lock 

 To prevent a priority inversion, 
turnstiles are organized according to a 
priority-inheritance protocol 
 Temporarily inherit the priority of the 

high-priority thread (blocked on this lock) 
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XP Synchronization 
 Use interrupt masks to protect access to global 

resources on uniprocessor systems (disable interrupt) 
 Uses spinlocks on multiprocessor system 
 Dispatcher objects: either in signaled or nonsignaled 

state 
 Signaled: object is available immediately 
 Nonsignaled: object is not available 
 Thread queue associated with each object 
 WaitForSingleObject or WaitForMultipleObjects 
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